1、原子熒光光譜分析是上世紀(jì)60年代中期提出并迅速發(fā)展起來的新型光譜技術(shù)。而原子熒光光度計(jì)是一種可以同時(shí)檢測砷和汞含量的方法,并且此方法比以往傳統(tǒng)的檢測技術(shù)操作過程要更加方便可靠、簡單快捷,最重要的是使用原子熒光檢測技術(shù),其檢測靈敏度更高,且干擾少,結(jié)果精確可靠,是當(dāng)今檢測技術(shù)的先鋒。
在酸性的條件下,化合價(jià)為三價(jià)的砷元素和化合價(jià)為二價(jià)的汞元素被硼氫化鉀還原成砷化氫,氫氣和氬氣在特制的點(diǎn)火裝置作用下形成氬氫火焰,從而使待測元素原子化。在元素砷和元素汞特制空心陰極燈的激化下,砷原子與汞原子從基態(tài)被激發(fā)直至高能態(tài),在高能態(tài)回到基態(tài)的時(shí)候,發(fā)射出特征波長的原子熒光,其熒光強(qiáng)度在一定的范Χ內(nèi)元素砷與元素汞的含量成正比。
水資源與土壤資源是與人類生活密切相關(guān)的,我們賴以為生的水稻生長是否健康安全絕大部分因素則取決于以上兩種資源的安全程度。砷元素廣泛的存在于自然界當(dāng)中,并且具有強(qiáng)金屬性。從化學(xué)的角度上看,砷元素的毒性及其低,但其化合物通常帶有劇毒,其中化合價(jià)為三價(jià)的砷化物,其毒性要比化合價(jià)為五價(jià)的砷化物毒性更加強(qiáng),倘若進(jìn)入生物體內(nèi)則會產(chǎn)生劇毒。元素砷可以通過皮膚,呼吸系統(tǒng)及消化系統(tǒng)進(jìn)入人體內(nèi)部,如果砷的攝入量超過一定限度,則會在生物體內(nèi)累積,從而引起慢性或急性中毒事件。其中慢性砷中毒會引起消化系統(tǒng)異常,神經(jīng)系統(tǒng)及皮膚發(fā)生病變,急性砷中毒很大可能會直接導(dǎo)致死亡,并且砷元素還會致癌。國家標(biāo)準(zhǔn)認(rèn)定,汞元素在人體內(nèi)累積到一定量時(shí)會對人的腎臟,肝臟及神經(jīng)系統(tǒng)產(chǎn)生及其嚴(yán)重的破壞。由此可見,砷與汞超標(biāo)對人體的Σ害都是極大的,造成的損傷也是無法挽回的。所以,一種高效快速,且精密的檢測設(shè)備顯得尤為重要。
原子熒光檢測技術(shù)中所產(chǎn)生的不確定因素有很多,其中包括測量儀器不夠精密、環(huán)境條件的干擾、人員操作不當(dāng)等等,從而使實(shí)驗(yàn)室間的測量結(jié)果具有可比性。在上述引起不確定性的因素當(dāng)中,絕大多數(shù)都是由于在檢測實(shí)驗(yàn)操作過程中產(chǎn)生的誤差所引起的,通常情況下與方法的固有偏差無關(guān)。
偏差整體控制與影響結(jié)果方法參數(shù)的控制有著密切的關(guān)系。同時(shí)從各個(gè)不確定度分量對測量不確定度大小的對比來看,含量測定不確定度的主要因素是測量試液中砷元素含量與重復(fù)性引發(fā)的不確定度。所以,在日常測量過程中,我們必須隨時(shí)調(diào)整儀器,保證試驗(yàn)中實(shí)驗(yàn)儀器的良好性,以避免或減少以上所述的不確定度分量。
計(jì)算不確定度分量大致可分為隨機(jī)變化估計(jì)、回收不確定度估計(jì)、總性能研究的不確定度等。由于稱量過程而引起的不確定度,實(shí)驗(yàn)時(shí),我們將天平的靈敏度進(jìn)行調(diào)整,測量的可能值區(qū)間為半個(gè)區(qū)間,由誤差引起不確定度。重復(fù)稱量引起的不確定度,實(shí)驗(yàn)時(shí)將砝碼放在天平上反復(fù)稱量,觀察變動性標(biāo)準(zhǔn)差引入標(biāo)準(zhǔn)不確定度。
在使用比色管定容消化液時(shí)也可能產(chǎn)生不確定度,比色管和溶液溫度與校正時(shí)的溫度不同同樣會引起檢測體積的不確定度。使用比色管引起不確定度時(shí),包括標(biāo)準(zhǔn)不確定度和相對不確定度,溫度引起的誤差不確定度與重復(fù)測量引起的誤差不確定度。但在實(shí)驗(yàn)時(shí)我們常常會忽略稀釋對不確定度的影響。在實(shí)際使用原子熒光光度計(jì)測量時(shí),儀器自校準(zhǔn)是保證其檢測質(zhì)量的一項(xiàng)重要手段。
經(jīng)過三十年的發(fā)展,原子熒光光譜法日漸成熟,在地質(zhì)、生物、水及空氣、金屬及合金、化工原料及試劑等物料分析中應(yīng)用非常廣泛,發(fā)表了大量應(yīng)用技術(shù)文章,雖然簡單重復(fù)他人工作的研究較多,但其中也有不少具有創(chuàng)新、富有特色的工作。
5.1地質(zhì)樣品
原子熒光光譜法最早應(yīng)用在地質(zhì)樣品測試中,源于早期我國大規(guī)模化探工作的開展。目前,土壤、巖石、水系沉積物、ú炭和各類礦石樣品中,As、Sb、Bi、Hg、Se、Ge最常用的測試方法就是原子熒光光譜法。地質(zhì)樣品基體復(fù)雜,是應(yīng)用技術(shù)研究較多的領(lǐng)域。
5.1.1樣品分解
在樣品分解方面,除傳統(tǒng)酸溶分解外,采用艾斯卡試劑(碳酸鈉和氧化鋅)作焙燒試劑,焙燒富集分離地質(zhì)樣品中痕量Te、Se,使被測元素與基體分離,能有效地消除干擾。堿熔分解樣品雖不常用,但是為了節(jié)省時(shí)間,測定地質(zhì)樣品中的Ge時(shí),可以共享W、Mo、F的KOH堿熔體系溶液,磷酸酸化后直接測定,Ge的檢出限為0.1μg/g。另外,可采用Na2O2熔解樣品,鹽酸酸化,無需分離基體,連續(xù)測定銻精礦中的As、Bi、Se、Sn。
5.1.2基體干擾及消除
基體干擾是地質(zhì)樣品測試中的重要研究內(nèi)容,原子熒光光譜法的干擾主要來源于共存的過渡金屬、貴金屬以及能夠同時(shí)形成化學(xué)蒸氣的元素。“堿性模式”是將堿性溶液直接氫化反應(yīng),能更大程度消除過渡金屬和貴金屬的干擾,采用堿性模式測定地質(zhì)樣品中的Ge、鐵礦石中的As和多金屬礦中的Bi,效果良好。
5.2生物樣品
在農(nóng)業(yè)、食品、衛(wèi)生防疫、醫(yī)藥、環(huán)境等領(lǐng)域生物樣品檢測中,原子熒光光譜分析發(fā)展非常迅速。生物樣品多種多樣,包括食品、中(成)藥、水產(chǎn)品、植物、動物組織及代謝物,待測元素含量低、有機(jī)基體是其主要特性。有關(guān)有機(jī)組分干擾原子熒光光譜法的研究報(bào)道不多,酸消解生物樣品時(shí),如果有機(jī)基體δ被充分破壞,部分有機(jī)物以不飽和有機(jī)酸的形式殘留在消解液中,從而可能對一些元素的測試產(chǎn)生干擾。研究證實(shí),有機(jī)質(zhì)對As、Sb、Bi、Cd的測定有明顯影響,因此,元素全量測定時(shí)必須要對有機(jī)組分進(jìn)行徹底消解。消解方法除傳統(tǒng)敞開酸溶外,高壓罐消解法和干灰化法也有應(yīng)用,更具優(yōu)勢的微波消解法更是受到青睞。
5.3原子熒光光度計(jì)故障排查
原子熒光光度計(jì)在對土壤的砷元素檢測時(shí),其熒光強(qiáng)度非常低,并且不會隨著標(biāo)準(zhǔn)濃度變化而變化,標(biāo)準(zhǔn)下的濃度熒光強(qiáng)度基本上和空白時(shí)相同。根據(jù)原子熒光光度計(jì)的工作原理,其故障發(fā)生在熒光檢測儀器內(nèi)、原子化系統(tǒng)、氫化物發(fā)生系統(tǒng)、氣·系統(tǒng)及電子線·部分的可能性極大。熒光檢測器原子化系統(tǒng)排查時(shí)需注意,使用原子熒光技術(shù)檢測砷元素時(shí),檢測過程中會產(chǎn)生有關(guān)砷的氫化物,所以檢測時(shí)必須要提供原子化溫度。原子化溫度主要是由氬氫火焰提供的,¯絲除了點(diǎn)燃火焰外,其自身還有保持¯體溫度的作用,所以¯絲在供電電壓過低的情況下,雖然也能點(diǎn)燃火焰,但¯體溫度過低會導(dǎo)致原子化效率,導(dǎo)致基態(tài)原子生成不足,使熒光的強(qiáng)度也過低,因此檢測時(shí)必須要達(dá)到合適的原子化溫度才可進(jìn)行檢測。
總之,原子熒光光度計(jì)檢測技術(shù)本著檢測操作過程簡單快捷,方便可靠,靈敏度高,且抗干擾能力強(qiáng),檢測結(jié)果精確可靠等眾多優(yōu)點(diǎn)已成為全國各個(gè)領(lǐng)域的常規(guī)檢測儀器,并向著更廣闊的領(lǐng)域應(yīng)用與發(fā)展。